Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(2): e0298723, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38126751

RESUMO

Acetone carboxylases (ACs) catalyze the metal- and ATP-dependent conversion of acetone and bicarbonate to form acetoacetate. Interestingly, two homologous ACs that have been biochemically characterized have been reported to have different metal complements, implicating different metal dependencies in catalysis. ACs from proteobacteria Xanthobacter autotrophicus and Aromatoleum aromaticum share 68% sequence identity but have been proposed to have different catalytic metals. In this work, the two ACs were expressed under the same conditions in Escherichia coli and were subjected to parallel chelation and reconstitution experiments with Mn(II) or Fe(II). Electron paramagnetic and Mössbauer spectroscopies identified signatures, respectively, of Mn(II) or Fe(II) bound at the active site. These experiments showed that the respective ACs, without the assistance of chaperones, second metal sites, or post-translational modifications facilitate correct metal incorporation, and despite the expected thermodynamic preference for Fe(II), each preferred a distinct metal. Catalysis was likewise associated uniquely with the cognate metal, though either could potentially serve the proposed Lewis acidic role. Subtle differences in the protein structure are implicated in serving as a selectivity filter for Mn(II) or Fe(II).IMPORTANCEThe Irving-Williams series refers to the predicted stabilities of transition metal complexes where the observed general stability for divalent first-row transition metal complexes increase across the row. Acetone carboxylases (ACs) use a coordinated divalent metal at their active site in the catalytic conversion of bicarbonate and acetone to form acetoacetate. Highly homologous ACs discriminate among different divalent metals at their active sites such that variations of the enzyme prefer Mn(II) over Fe(II), defying Irving-Williams-predicted behavior. Defining the determinants that promote metal discrimination within the first-row transition metals is of broad fundamental importance in understanding metal-mediated catalysis and metal catalyst design.


Assuntos
Acetona , Complexos de Coordenação , Acetona/metabolismo , Acetoacetatos , Manganês/metabolismo , Bicarbonatos , Metais/metabolismo , Compostos Ferrosos/metabolismo , Catálise
2.
Microbiol Spectr ; : e0481522, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862015

RESUMO

Members of the phylum Bacteroidetes are abundant in healthy gastrointestinal (GI) tract flora. Bacteroides thetaiotaomicron is a commensal heme auxotroph and representative of this group. Bacteroidetes are sensitive to host dietary iron restriction but proliferate in heme-rich environments that are also associated with colon cancer. We hypothesized that B. thetaiotaomicron may act as a host reservoir for iron and/or heme. In this study, we defined growth-promoting quantities of iron for B. thetaiotaomicron. B. thetaiotaomicron preferentially consumed and hyperaccumulated iron in the form of heme when presented both heme and nonheme iron sources in excess of its growth needs, leading to an estimated 3.6 to 8.4 mg iron in a model GI tract microbiome consisting solely of B. thetaiotaomicron. Protoporphyrin IX was identified as an organic coproduct of heme metabolism, consistent with anaerobic removal of iron from the heme leaving the intact tetrapyrrole as the observed product. Notably, no predicted or discernible pathway for protoporphyrin IX generation exists in B. thetaiotaomicron. Heme metabolism in congeners of B. thetaiotaomicron has previously been associated with the 6-gene hmu operon, based on genetic studies. A bioinformatics survey demonstrated that the intact operon is widespread in but confined to members of the Bacteroidetes phylum and ubiquitous in healthy human GI tract flora. Anaerobic heme metabolism by commensal Bacteroidetes via hmu is likely a major contributor to human host metabolism of the heme from dietary red meat and a driver for the selective growth of these species in the GI tract consortium. IMPORTANCE Research on bacterial iron metabolism has historically focused on the host-pathogen relationship, where the host suppresses pathogen growth by cutting off access to iron. Less is known about how host iron is shared with bacterial species that live commensally in the anaerobic human GI tract, typified by members of phylum Bacteroidetes. While many facultative pathogens avidly produce and consume heme iron, most GI tract anaerobes are heme auxotrophs whose metabolic preferences we aimed to describe. Understanding iron metabolism by model microbiome species like Bacteroides thetaiotaomicron is essential for modeling the ecology of the GI tract, which serves the long-term biomedical goals of manipulating the microbiome to facilitate host metabolism of iron and remediate dysbiosis and associated pathologies (e.g., inflammation and cancer).

3.
Nat Commun ; 13(1): 7850, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543766

RESUMO

Enzymatic deconstruction of poly(ethylene terephthalate) (PET) is under intense investigation, given the ability of hydrolase enzymes to depolymerize PET to its constituent monomers near the polymer glass transition temperature. To date, reported PET hydrolases have been sourced from a relatively narrow sequence space. Here, we identify additional PET-active biocatalysts from natural diversity by using bioinformatics and machine learning to mine 74 putative thermotolerant PET hydrolases. We successfully express, purify, and assay 51 enzymes from seven distinct phylogenetic groups; observing PET hydrolysis activity on amorphous PET film from 37 enzymes in reactions spanning pH from 4.5-9.0 and temperatures from 30-70 °C. We conduct PET hydrolysis time-course reactions with the best-performing enzymes, where we observe differences in substrate selectivity as function of PET morphology. We employed X-ray crystallography and AlphaFold to examine the enzyme architectures of all 74 candidates, revealing protein folds and accessory domains not previously associated with PET deconstruction. Overall, this study expands the number and diversity of thermotolerant scaffolds for enzymatic PET deconstruction.


Assuntos
Hidrolases , Polietilenotereftalatos , Hidrolases/metabolismo , Polietilenotereftalatos/química , Filogenia , Hidrólise , Etilenos
4.
Proc Natl Acad Sci U S A ; 119(36): e2207190119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037354

RESUMO

Mercaptoethane sulfonate or coenzyme M (CoM) is the smallest known organic cofactor and is most commonly associated with the methane-forming step in all methanogenic archaea but is also associated with the anaerobic oxidation of methane to CO2 in anaerobic methanotrophic archaea and the oxidation of short-chain alkanes in Syntrophoarchaeum species. It has also been found in a small number of bacteria capable of the metabolism of small organics. Although many of the steps for CoM biosynthesis in methanogenic archaea have been elucidated, a complete pathway for the biosynthesis of CoM in archaea or bacteria has not been reported. Here, we present the complete CoM biosynthesis pathway in bacteria, revealing distinct chemical steps relative to CoM biosynthesis in methanogenic archaea. The existence of different pathways represents a profound instance of convergent evolution. The five-step pathway involves the addition of sulfite, the elimination of phosphate, decarboxylation, thiolation, and the reduction to affect the sequential conversion of phosphoenolpyruvate to CoM. The salient features of the pathway demonstrate reactivities for members of large aspartase/fumarase and pyridoxal 5'-phosphate-dependent enzyme families.


Assuntos
Bactérias , Coenzimas , Euryarchaeota , Mesna , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Coenzimas/biossíntese , Euryarchaeota/metabolismo , Mesna/metabolismo , Metano/metabolismo , Oxirredução , Fosfatos/metabolismo
5.
J Biol Chem ; 298(5): 101884, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367206

RESUMO

2-Ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) is a member of the flavin and cysteine disulfide containing oxidoreductase family (DSOR) that catalyzes the unique reaction between atmospheric CO2 and a ketone/enolate nucleophile to generate acetoacetate. However, the mechanism of this reaction is not well understood. Here, we present evidence that 2-KPCC, in contrast to the well-characterized DSOR enzyme glutathione reductase, undergoes conformational changes during catalysis. Using a suite of biophysical techniques including limited proteolysis, differential scanning fluorimetry, and native mass spectrometry in the presence of substrates and inhibitors, we observed conformational differences between different ligand-bound 2-KPCC species within the catalytic cycle. Analysis of site-specific amino acid variants indicated that 2-KPCC-defining residues, Phe501-His506, within the active site are important for transducing these ligand induced conformational changes. We propose that these conformational changes promote substrate discrimination between H+ and CO2 to favor the metabolically preferred carboxylation product, acetoacetate.


Assuntos
Carboxiliases , Mesna , Acetoacetatos/metabolismo , Dióxido de Carbono/metabolismo , Carboxiliases/metabolismo , Catálise , Ligantes , Mesna/metabolismo , Oxirredutases/metabolismo , Xanthobacter/metabolismo
6.
RSC Adv ; 12(13): 8119-8130, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424733

RESUMO

Esterase enzymes catalyze diverse hydrolysis reactions with important biological, commercial, and biotechnological applications. For the improvement of these biocatalysts, there is a need for widely accessible, inexpensive, and adaptable activity screening assays that identify enzymes with particular substrate specificities. Natural systems for biopolymer bioconversion, and likely those designed to mimic them, depend on cocktails of enzymes, each of which specifically targets the intact material as well as water-soluble subunits of varying size. In this work, we have adapted a UV/visible assay using pH-sensitive sulfonphthalein dyes for the real-time quantification of ester hydrolysis of bis-(2-hydroxyethyl) terephthalate (BHET), a subunit of polyethylene terephthalate (PET) plastic. We applied this method to a diverse set of known PET hydrolases and commercial esterases in a microplate format. The approach identified four PET hydrolases and one commercial esterase with high levels of specificity for BHET hydrolysis. Five additional PET hydrolases and three commercial esterases, including a thermophilic enzyme, effectively hydrolyzed both BHET and its monoester product MHET (mono-(2-hydroxyethyl) terephthalate). Specific activities were discernible within one hour and reactions reached an unequivocal endpoint well within 24 hours. The results from the UV/visible method correlated well with conventional HPLC analysis of the reaction products. We examined the suitability of the method toward variable pH, temperature, enzyme preparation method, mono- and multi-ester substrate type, and level of sensitivity versus stringency, finding the assay to be easily adaptable to diverse screening conditions and kinetic measurements. This method offers an accurate, easily accessible, and cost-effective route towards high-throughput library screening to support the discovery, directed evolution, and protein engineering of these critical biocatalysts.

7.
Proc Natl Acad Sci U S A ; 119(13): e2121426119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312352

RESUMO

SignificanceMore than 400 million tons of plastic waste is produced each year, the overwhelming majority of which ends up in landfills. Bioconversion strategies aimed at plastics have emerged as important components of enabling a circular economy for synthetic plastics, especially those that exhibit chemically similar linkages to those found in nature, such as polyesters. The enzyme system described in this work is essential for mineralization of the xenobiotic components of poly(ethylene terephthalate) (PET) in the biosphere. Our description of its structure and substrate preferences lays the groundwork for in vivo or ex vivo engineering of this system for PET upcycling.


Assuntos
Dioxigenases , Ácidos Ftálicos , Plásticos/química , Polietilenotereftalatos/química
8.
Curr Opin Biotechnol ; 73: 43-50, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34303185

RESUMO

The valorization of lignin is critical to establishing sustainable biorefineries as we transition away from petroleum-derived feedstocks. Advances in lignin fractionation and depolymerization are yielding new opportunities for the biocatalytic upgrading of lignin-derived aromatic compounds (LDACs) using microbial cell factories. Given their roles in lignin metabolism and their catalytic versatility, cytochromes P450 are attractive enzymes in engineering such biocatalysts. Here we highlight P450s that catalyze aromatic O-demethylation, a rate-limiting step in the conversion of LDACs to valuable chemicals, including efforts to engineer the specificity of these enzymes and to use them in developing biocatalysts. We also discuss broader opportunities at the intersection of biochemistry, structure-guided enzyme engineering, and metabolic engineering for application of P450s in the emerging area of microbial lignin valorization.


Assuntos
Sistema Enzimático do Citocromo P-450 , Lignina , Engenharia Metabólica , Biocatálise , Catálise , Sistema Enzimático do Citocromo P-450/metabolismo , Lignina/metabolismo
9.
JACS Au ; 1(3): 252-261, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-34467290

RESUMO

Biological funneling of lignin-derived aromatic compounds is a promising approach for valorizing its catalytic depolymerization products. Industrial processes for aromatic bioconversion will require efficient enzymes for key reactions, including demethylation of O-methoxy-aryl groups, an essential and often rate-limiting step. The recently characterized GcoAB cytochrome P450 system comprises a coupled monoxygenase (GcoA) and reductase (GcoB) that catalyzes oxidative demethylation of the O-methoxy-aryl group in guaiacol. Here, we evaluate a series of engineered GcoA variants for their ability to demethylate o-and p-vanillin, which are abundant lignin depolymerization products. Two rationally designed, single amino acid substitutions, F169S and T296S, are required to convert GcoA into an efficient catalyst toward the o- and p-isomers of vanillin, respectively. Gain-of-function in each case is explained in light of an extensive series of enzyme-ligand structures, kinetic data, and molecular dynamics simulations. Using strains of Pseudomonas putida KT2440 already optimized for p-vanillin production from ferulate, we demonstrate demethylation by the T296S variant in vivo. This work expands the known aromatic O-demethylation capacity of cytochrome P450 enzymes toward important lignin-derived aromatic monomers.

10.
J Biol Chem ; 297(2): 100961, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34265301

RESUMO

The 2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) enzyme is the only member of the disulfide oxidoreductase (DSOR) family of enzymes, which are important for reductively cleaving S-S bonds, to have carboxylation activity. 2-KPCC catalyzes the conversion of 2-ketopropyl-coenzyme M to acetoacetate, which is used as a carbon source, in a controlled reaction to exclude protons. A conserved His-Glu motif present in DSORs is key in the protonation step; however, in 2-KPCC, the dyad is substituted by Phe-His. Here, we propose that this difference is important for coupling carboxylation with C-S bond cleavage. We substituted the Phe-His dyad in 2-KPCC to be more DSOR like, replacing the phenylalanine with histidine (F501H) and the histidine with glutamate (H506E), and solved crystal structures of F501H and the double variant F501H_H506E. We found that F501 protects the enolacetone intermediate from protons and that the F501H variant strongly promotes protonation. We also provided evidence for the involvement of the H506 residue in stabilizing the developing charge during the formation of acetoacetate, which acts as a product inhibitor in the WT but not the H506E variant enzymes. Finally, we determined that the F501H substitution promotes a DSOR-like charge transfer interaction with flavin adenine dinucleotide, eliminating the need for cysteine as an internal base. Taken together, these results indicate that the 2-KPCC dyad is responsible for selectively promoting carboxylation and inhibiting protonation in the formation of acetoacetate.


Assuntos
Dipeptídeos , Cetona Oxirredutases , Mesna , Carboxiliases/metabolismo , Domínio Catalítico , Oxirredutases/metabolismo , Especificidade por Substrato , Xanthobacter/metabolismo
11.
J Bacteriol ; 203(17): e0011721, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34124941

RESUMO

Archaeal methanogens, methanotrophs, and alkanotrophs have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, traffic, deploy, and store these elements. Here, we examined the distribution of homologs of proteins mediating key steps in Fe/S metabolism in model microorganisms, including iron(II) sensing/uptake (FeoAB), sulfide extraction from cysteine (SufS), and the biosynthesis of iron-sulfur [Fe-S] clusters (SufBCDE), siroheme (Pch2 dehydrogenase), protoheme (AhbABCD), cytochrome c (Cyt c) (CcmCF), and iron storage/detoxification (Bfr, FtrA, and IssA), among 326 publicly available, complete or metagenome-assembled genomes of archaeal methanogens/methanotrophs/alkanotrophs. The results indicate several prevalent but nonuniversal features, including FeoB, SufBC, and the biosynthetic apparatus for the basic tetrapyrrole scaffold, as well as its siroheme (and F430) derivatives. However, several early-diverging genomes lacked SufS and pathways to synthesize and deploy heme. Genomes encoding complete versus incomplete heme biosynthetic pathways exhibited equivalent prevalences of [Fe-S] cluster binding proteins, suggesting an expansion of catalytic capabilities rather than substitution of heme for [Fe-S] in the former group. Several strains with heme binding proteins lacked heme biosynthesis capabilities, while other strains with siroheme biosynthesis capability lacked homologs of known siroheme binding proteins, indicating heme auxotrophy and unknown siroheme biochemistry, respectively. While ferritin proteins involved in ferric oxide storage were widespread, those involved in storing Fe as thioferrate were unevenly distributed. Collectively, the results suggest that differences in the mechanisms of Fe and S acquisition, deployment, and storage have accompanied the diversification of methanogens/methanotrophs/alkanotrophs, possibly in response to differential availability of these elements as these organisms evolved. IMPORTANCE Archaeal methanogens, methanotrophs, and alkanotrophs, argued to be among the most ancient forms of life, have a high demand for iron (Fe) and sulfur (S) for cofactor biosynthesis, among other uses. Here, using comparative bioinformatic approaches applied to 326 genomes, we show that major differences in Fe/S acquisition, trafficking, deployment, and storage exist in this group. Variation in these characters was generally congruent with the phylogenetic placement of these genomes, indicating that variation in Fe/S usage and deployment has contributed to the diversification and ecology of these organisms. However, incongruency was observed among the distribution of cofactor biosynthesis pathways and known protein destinations for those cofactors, suggesting auxotrophy or yet-to-be-discovered pathways for cofactor biosynthesis.


Assuntos
Alcanos/metabolismo , Archaea/classificação , Archaea/metabolismo , Coenzimas/metabolismo , Ferro/metabolismo , Metano/metabolismo , Enxofre/metabolismo , Archaea/genética , Archaea/isolamento & purificação , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Processos Autotróficos , Vias Biossintéticas , Cisteína/metabolismo , Compostos Férricos/metabolismo , Heme/análogos & derivados , Heme/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Filogenia
12.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188000

RESUMO

Iron is an essential micronutrient for life. In mammals, dietary iron is absorbed primarily in the small intestine. Currently, the impacts of dietary iron on the taxonomic structure and function of the gut microbiome and reciprocal effects on the animal host are not well understood. Here, we establish a mouse model of low-iron challenge in which intestinal biomarkers and reduced fecal iron reveal iron stress while serum iron and mouse behavioral markers indicate maintenance of iron homeostasis. We show that the diversity of the gut microbiome in conventional C57BL/6 mice changes dramatically during 2 weeks on a low-iron diet. We also show the effects of a low-iron diet on microbiome diversity are long lasting and not easily recovered when iron is returned to the diet. Finally, after optimizing taxon association methods, we show that some bacteria are unable to fully recover after the low-iron challenge and appear to be extirpated from the gut entirely. In particular, operational taxonomic units (OTUs) from the Prevotellaceae and Porphyromonadaceae families and Bacteroidales order are highly sensitive to low-iron conditions, while other seemingly insensitive OTUs recover. These results provide new insights into the iron requirements of gut microbiome members and add to the growing understanding of mammalian iron cycling.IMPORTANCE All cells need iron. Both too much and too little iron lead to diseases and unwanted outcomes. Although the impact of dietary iron on human cells and tissues has been well studied, there is currently a lack of understanding about how different levels of iron influence the abundant and diverse members of the human microbiome. This study develops a well-characterized mouse model for studying low-iron levels and identifies key groups of bacteria that are most affected. We found that the microbiome undergoes large changes when iron is removed from the diet but that many individual bacteria are able to rebound when iron levels are changed back to normal. That said, a select few members, referred to as iron-sensitive bacteria, seem to be lost. This study begins to identify individual members of the mammalian microbiome most affected by changes in dietary iron levels.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Ferro/administração & dosagem , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Fezes/química , Feminino , Microbioma Gastrointestinal/genética , Ferro/sangue , Ferro/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
13.
Biochem J ; 477(11): 2027-2038, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32497192

RESUMO

Alkenes and ketones are two classes of ubiquitous, toxic organic compounds in natural environments produced in several biological and anthropogenic processes. In spite of their toxicity, these compounds are utilized as primary carbon and energy sources or are generated as intermediate metabolites in the metabolism of other compounds by many diverse bacteria. The aerobic metabolism of some of the smallest and most volatile of these compounds (propylene, acetone, isopropanol) involves novel carboxylation reactions resulting in a common product acetoacetate. Propylene is metabolized in a four-step pathway involving five enzymes where the penultimate step is a carboxylation reaction catalyzed by a unique disulfide oxidoreductase that couples reductive cleavage of a thioether linkage with carboxylation to produce acetoacetate. The carboxylation of isopropanol begins with conversion to acetone via an alcohol dehydrogenase. Acetone is converted to acetoacetate in a single step by an acetone carboxylase which couples the hydrolysis of MgATP to the activation of both acetone and bicarbonate, generating highly reactive intermediates that are condensed into acetoacetate at a Mn2+ containing the active site. Acetoacetate is then utilized in central metabolism where it is readily converted to acetyl-coenzyme A and subsequently converted into biomass or utilized in energy metabolism via the tricarboxylic acid cycle. This review summarizes recent structural and biochemical findings that have contributed significant insights into the mechanism of these two unique carboxylating enzymes.


Assuntos
Acetona/metabolismo , Alcenos/metabolismo , Bactérias/metabolismo , 2-Propanol/metabolismo , Acetoacetatos/metabolismo , Acetilcoenzima A/metabolismo , Bicarbonatos/metabolismo , Catálise , Ciclo do Ácido Cítrico/fisiologia
14.
Proc Natl Acad Sci U S A ; 117(3): 1504-1513, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31907317

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of monocopper enzymes broadly distributed across the tree of life. Recent reports indicate that LPMOs can use H2O2 as an oxidant and thus carry out a novel type of peroxygenase reaction involving unprecedented copper chemistry. Here, we present a combined computational and experimental analysis of the H2O2-mediated reaction mechanism. In silico studies, based on a model of the enzyme in complex with a crystalline substrate, suggest that a network of hydrogen bonds, involving both the enzyme and the substrate, brings H2O2 into a strained reactive conformation and guides a derived hydroxyl radical toward formation of a copper-oxyl intermediate. The initial cleavage of H2O2 and subsequent hydrogen atom abstraction from chitin by the copper-oxyl intermediate are the main energy barriers. Stopped-flow fluorimetry experiments demonstrated that the priming reduction of LPMO-Cu(II) to LPMO-Cu(I) is a fast process compared to the reoxidation reactions. Using conditions resulting in single oxidative events, we found that reoxidation of LPMO-Cu(I) is 2,000-fold faster with H2O2 than with O2, the latter being several orders of magnitude slower than rates reported for other monooxygenases. The presence of substrate accelerated reoxidation by H2O2, whereas reoxidation by O2 became slower, supporting the peroxygenase paradigm. These insights into the peroxygenase nature of LPMOs will aid in the development and application of enzymatic and synthetic copper catalysts and contribute to a further understanding of the roles of LPMOs in nature, varying from biomass conversion to chitinolytic pathogenesis-defense mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Quitina/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Celulose/química , Celulose/metabolismo , Quitina/química , Cobre/química , Cobre/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxirredução , Serratia marcescens/enzimologia
15.
J Org Chem ; 85(2): 1315-1321, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31830417

RESUMO

The role of the chemical environment in promoting anthralin/O2 reactions was discovered using neat solvents to model the amino acids of a cofactor-independent oxygenase. Experimental and computational results highlight the importance of the substrate-enolate, which is accessed via energetically small, escalating steps in which the ground-state keto-isomer is tautomerized to an enol and then ionized by solvent. The resulting ion-pair is poised for spontaneous electron transfer to O2. Similar activation may be exploited in biological/nonbiological oxidations involving O2.

16.
Biochemistry ; 58(52): 5259-5270, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31241911

RESUMO

The pathway for assembling heme ends with a unique set of enzymes in Gram-positive bacteria. Substrates for these reactions include coproporphyrin III, Fe(II), and H2O2, which are highly reactive and toxic. Because these bacteria lack membranous compartments, we hypothesized that metabolite flux may occur via a transient protein-protein interaction between the final two pathway enzymes, coproporphyrin ferrochelatase (CpfC) and coproheme decarboxylase (ChdC). This hypothesis was tested using enzymes from the pathogen Staphylococcus aureus and a corresponding ΔchdC knockout strain. The ultraviolet-visible spectral features of coproporphyrin III served as an in vitro indicator of a protein-protein interaction. A CpfC-ChdC KD of 17 ± 7 µM was determined, consistent with transient complexation and supported by the observation that the catalytic competence of both enzymes was moderately suppressed in the stable complex. The ΔchdC S. aureus was transformed with plasmids containing single-amino acid mutants in the active site gate of ChdC. The porphyrin content and growth phenotypes of these mutants showed that K129 and Y133 promote the ChdC-CpfC interaction and revealed the importance of E120. Understanding the nature of interactions between these enzymes and those further upstream in the heme biosynthesis pathway could provide new means of specifically targeting pathogenic Gram-positive bacteria such as S. aureus.


Assuntos
Heme/biossíntese , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coproporfirinas/metabolismo , Fenótipo , Mutação Puntual
17.
Proc Natl Acad Sci U S A ; 116(28): 13970-13976, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235604

RESUMO

Microbial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is O-aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form catechol. However, native GcoAB has minimal ability to demethylate syringol (2,6-dimethoxyphenol), the analogous compound that can be produced from sinapyl alcohol-derived lignin. Despite the abundance of sinapyl alcohol-based lignin in plants, no pathway for syringol catabolism has been reported to date. Here we used structure-guided protein engineering to enable microbial syringol utilization with GcoAB. Specifically, a phenylalanine residue (GcoA-F169) interferes with the binding of syringol in the active site, and on mutation to smaller amino acids, efficient syringol O-demethylation is achieved. Crystallography indicates that syringol adopts a productive binding pose in the variant, which molecular dynamics simulations trace to the elimination of steric clash between the highly flexible side chain of GcoA-F169 and the additional methoxy group of syringol. Finally, we demonstrate in vivo syringol turnover in Pseudomonas putida KT2440 with the GcoA-F169A variant. Taken together, our findings highlight the significant potential and plasticity of cytochrome P450 aromatic O-demethylases in the biological conversion of lignin-derived aromatic compounds.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Lignina/genética , Engenharia de Proteínas , Pirogalol/análogos & derivados , Sistema Enzimático do Citocromo P-450/química , Lignina/biossíntese , Lignina/metabolismo , Metilação , Oxirredução , Oxirredutases O-Desmetilantes/química , Oxirredutases O-Desmetilantes/genética , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Pirogalol/química , Pirogalol/metabolismo
18.
Curr Opin Struct Biol ; 59: 19-28, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30802830

RESUMO

Mechanisms for making and breaking the heme b cofactor (heme) are more diverse than previously expected. Biosynthetic pathways have diverged at least twice along taxonomic lines, reflecting differences in membrane organization and O2 utilization among major groups of organisms. At least three families of heme degradases are now known, again differing in whether and how O2 is used by the organism and possibly the purpose for turning over the tetrapyrrole. Understanding these enzymes and pathways offers a handle for antimicrobial development and for monitoring heme use in organismal and ecological systems.


Assuntos
Heme/química , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Sítios de Ligação , Domínio Catalítico , Heme/metabolismo , Redes e Vias Metabólicas , Conformação Molecular , Estrutura Molecular , Oxirredução , Ligação Proteica , Sensibilidade e Especificidade
19.
J Biol Chem ; 294(13): 5137-5145, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696768

RESUMO

NADPH: 2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) is a bacterial disulfide oxidoreductase (DSOR) that, uniquely in this family, catalyzes CO2 fixation. 2-KPCC differs from other DSORs by having a phenylalanine that replaces a conserved histidine, which in typical DSORs is essential for stabilizing the reduced, reactive form of the active site. Here, using site-directed mutagenesis and stopped-flow kinetics, we examined the reactive form of 2-KPCC and its single turnover reactions with a suicide substrate and CO2 The reductive half-reaction of 2-KPCC was kinetically and spectroscopically similar to that of a typical DSOR, GSH reductase, in which the active-site histidine had been replaced with an alanine. However, the reduced, reactive form of 2-KPCC was distinct from those typical DSORs. In the absence of the histidine, the flavin and disulfide moieties were no longer coupled via a covalent or charge transfer interaction as in typical DSORs. Similar to thioredoxins, the pKa between 7.5 and 8.1 that controls reactivity appeared to be due to a single proton shared between the cysteines of the dithiol, which effectively stabilizes the attacking cysteine sulfide and renders it capable of breaking the strong C-S bond of the substrate. The lack of a histidine protected 2-KPCC's reactive intermediate from unwanted protonation; however, without its input as a catalytic acid-base, the oxidative half-reaction where carboxylation takes place was remarkably slow, limiting the overall reaction rate. We conclude that stringent regulation of protons in the DSOR active site supports C-S bond cleavage and selectivity for CO2 fixation.


Assuntos
Dióxido de Carbono/metabolismo , Cetona Oxirredutases/metabolismo , Xanthobacter/enzimologia , Domínio Catalítico , Cetona Oxirredutases/química , Cinética , Modelos Moleculares , NADP/metabolismo , Oxirredução , Especificidade por Substrato , Xanthobacter/química , Xanthobacter/metabolismo
20.
J Biol Chem ; 294(10): 3661-3669, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30602564

RESUMO

Molecular oxygen (O2)-utilizing enzymes are among the most important in biology. The abundance of O2, its thermodynamic power, and the benign nature of its end products have raised interest in oxidases and oxygenases for biotechnological applications. Although most O2-dependent enzymes have an absolute requirement for an O2-activating cofactor, several classes of oxidases and oxygenases accelerate direct reactions between substrate and O2 using only the protein environment. Nogalamycin monooxygenase (NMO) from Streptomyces nogalater is a cofactor-independent enzyme that catalyzes rate-limiting electron transfer between its substrate and O2 Here, using enzyme-kinetic, cyclic voltammetry, and mutagenesis methods, we demonstrate that NMO initially activates the substrate, lowering its pKa by 1.0 unit (ΔG* = 1.4 kcal mol-1). We found that the one-electron reduction potential, measured for the deprotonated substrate both inside and outside the protein environment, increases by 85 mV inside NMO, corresponding to a ΔΔG0' of 2.0 kcal mol-1 (0.087 eV) and that the activation barrier, ΔG‡, is lowered by 4.8 kcal mol-1 (0.21 eV). Applying the Marcus model, we observed that this suggests a sizable decrease of 28 kcal mol-1 (1.4 eV) in the reorganization energy (λ), which constitutes the major portion of the protein environment's effect in lowering the reaction barrier. A similar role for the protein has been proposed in several cofactor-dependent systems and may reflect a broader trend in O2-utilizing proteins. In summary, NMO's protein environment facilitates direct electron transfer, and NMO accelerates rate-limiting electron transfer by strongly lowering the reorganization energy.


Assuntos
Oxigenases de Função Mista/metabolismo , Nogalamicina/metabolismo , Oxigênio/metabolismo , Domínio Catalítico , Transporte de Elétrons , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Mutagênese , Streptomyces/enzimologia , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...